Received 13 November 2006

Accepted 14 November 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Guang Chen

Department of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China

Correspondence e-mail: qufuchenguang@163.com

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.005 Å R factor = 0.046 wR factor = 0.144 Data-to-parameter ratio = 17.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tris(quinolin-8-olato- $\kappa^2 N$,O)iron(III) methanol solvate

The title compound, $[Fe(C_9H_6NO)_3]\cdot CH_3OH$, consists of a mononuclear $[Fe(C_9H_6NO)_3]$ complex molecule and a methanol solvent molecule. The Fe^{III} ion is coordinated by three N atoms and three O atoms from three quinolin-8-olate ligands. The six atoms around the metal form a slightly distorted octahedral geometry.

Comment

Recently, we have reported the structures of a number of transition metal complexes (Chen *et al.*, 2004*a*,*b*, 2005). As an extension of our work on the structural characterization of iron compounds, the title mononuclear iron(III) compound, (I), is reported here.

The structure of (I) (Fig. 1) consists of a mononuclear $[Fe(C_9H_6NO)_3]$ complex molecule and a methanol solvent molecule. The Fe^{III} ion is coordinated by three N atoms and three O atoms from three quinolin-8-olate ligands. The three *trans* angles at Fe range from 168.64 (8) to 171.16 (8)° (Table 1); the other angles range from 79.51 (7) to 95.50 (8)°, indicating a distorted octahedral geometry about the Fe atom. The Fe–N and Fe–O bond lengths are typical and comparable with the values in other iron complexes (Zibaseresht *et al.*, 2006; Onggo *et al.*, 2005; Bakir *et al.*, 2005). The methanol molecule is linked to the complex through the intermolecular O4–H4···O1 hydrogen bond (Table 2).

Experimental

Quinolin-8-ol (1.0 mmol, 145.1 mg) and Fe(NO₃)₃·9H₂O (0.5 mmol, 202.0 mg) were dissolved in a methanol solution (50 ml). The mixture was stirred for 1 h at room temperature and then filtered. After allowing the brown filtrate to stand in air for two weeks, brown block-shaped crystals were formed.

© 2006 International Union of Crystallography All rights reserved

metal-organic papers

Crystal data

 $[Fe(C_9H_6NO)_3] \cdot CH_4O$ $M_r = 520.34$ Monoclinic, $P2_1/n$ a = 10.868 (1) Å b = 13.246 (1) Å c = 17.288 (1) Å $\beta = 97.729$ (1)° V = 2466.1 (3) Å³

Data collection

Bruker SMART CCD area-detector
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.865, T_{\max} = 0.886$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.076P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.046$	+ 1.6804P]
$wR(F^2) = 0.144$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
5575 reflections	$\Delta \rho_{\rm max} = 0.73 \text{ e } \text{\AA}^{-3}$
327 parameters	$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Z = 4

 $D_x = 1.401 \text{ Mg m}^{-3}$

 $0.23 \times 0.22 \times 0.19 \text{ mm}$

14542 measured reflections 5575 independent reflections

4441 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.65 \text{ mm}^{-1}$

T = 298 (2) K

Block, brown

 $R_{\rm int} = 0.021$ $\theta_{\rm max} = 27.5^{\circ}$

Table 1

Selected geometric parameters (Å, °).

Fe1-O2	1.908 (2)	Fe1-N2	2.054 (2)
Fe1-O3	1.915 (2)	Fe1-N1	2.237 (2)
Fe1-O1	1.921 (2)	Fe1-N3	2.272 (2)
O2-Fe1-O3	92.84 (7)	O1-Fe1-N1	79.60 (8)
O2-Fe1-O1	170.18 (8)	N2-Fe1-N1	94.59 (8)
O3-Fe1-O1	95.50 (8)	O2-Fe1-N3	94.21 (8)
O2-Fe1-N2	82.26 (7)	O3-Fe1-N3	79.51 (7)
O3-Fe1-N2	171.16 (8)	O1-Fe1-N3	92.40 (8)
O1-Fe1-N2	90.10 (8)	N2-Fe1-N3	93.46 (8)
O2-Fe1-N1	94.81 (8)	N1-Fe1-N3	168.64 (8)
O3-Fe1-N1	93.15 (8)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O4−H4···O1	0.82	2.04	2.814 (4)	158

All H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C-H = 0.93-0.96 Å and O-H = 0.82 Å. They were treated as riding atoms, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C,O)$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve

Figure 1

The molecular structure of the title compound, (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The author thanks the Qufu Normal University for research grant No. xj03005.

References

- Bakir, M., Dasgupta, T. P., Dutta, S. K., Ngah, N. & Yamin, B. M. (2005). Acta Cryst. E61, m1464–m1466.
- Chen, G., Bai, Z.-P. & Qu, S.-J. (2005). Acta Cryst. E61, m2718–m2719.
- Chen, G., Sun, Y.-X., Sun, M. & Qi, W. (2004a). Acta Cryst. E60, m1547m1549.
- Chen, G., Sun, Y.-X., Sun, M. & Qi, W. (2004b). Acta Cryst. E60, m1550m1551.
- Onggo, D., Mimin, A., Yamin, B. M. & Ng, S. W. (2005). Acta Cryst. E61, m387– m388.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Zibaseresht, R., Robinson, W. T. & Hartshorn, R. M. (2006). Acta Cryst. E62, m1150–m1153.